Mining Console Logs for Large-Scale System Problem Detection
نویسندگان
چکیده
The console logs generated by an application contain messages that the application developers believed would be useful in debugging or monitoring the application. Despite the ubiquity and large size of these logs, they are rarely exploited in a systematic way for monitoring and debugging because they are not readily machineparsable. In this paper, we propose a novel method for mining this rich source of information. First, we combine log parsing and text mining with source code analysis to extract structure from the console logs. Second, we extract features from the structured information in order to detect anomalous patterns in the logs using Principal Component Analysis (PCA). Finally, we use a decision tree to distill the results of PCA-based anomaly detection to a format readily understandable by domain experts (e.g. system operators) who need not be familiar with the anomaly detection algorithms. As a case study, we distill over one million lines of console logs from the Hadoop file system to a simple decision tree that a domain expert can readily understand; the process requires no operator intervention and we detect a large portion of runtime anomalies that are commonly overlooked.
منابع مشابه
System Problem Detection by Mining Console Logs
System Problem Detection by Mining Console Logs
متن کاملMining Invariants from Console Logs for System Problem Detection
Detecting execution anomalies is very important to the maintenance and monitoring of large-scale distributed systems. People often use console logs that are produced by distributed systems for troubleshooting and problem diagnosis. However, manually inspecting console logs for the detection of anomalies is unfeasible due to the increasing scale and complexity of distributed systems. Therefore, ...
متن کاملExperience Mining Google's Production Console Logs
We describe our early experience in applying our console log mining techniques [19, 20] to logs from production Google systems with thousands of nodes. This data set is five orders of magnitude in size and contains almost 20 times as many messages types as the Hadoop data set we used in [19]. It also has many properties that are unique to large scale production deployments (e.g., the system sta...
متن کاملConcept drift detection in business process logs using deep learning
Process mining provides a bridge between process modeling and analysis on the one hand and data mining on the other hand. Process mining aims at discovering, monitoring, and improving real processes by extracting knowledge from event logs. However, as most business processes change over time (e.g. the effects of new legislation, seasonal effects and etc.), traditional process mining techniques ...
متن کاملAnomaly Sequences Detection from Logs Based on Compression
Mining information from logs is an old and still active research topic. In recent years, with the rapid emerging of cloud computing, log mining becomes increasingly important to industry. This paper focus on one major mission of log mining: anomaly detection, and proposes a novel method for mining abnormal sequences from large logs. Different from previous anomaly detection systems which based ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2008